

Mathématiques



14/12/2013

Présentation /3

D08S

3h30

1 er problème :

A) Étude d'un endomorphisme

- $\mathbf{1}^\circ$) Vérifier que Δ est un endomorphisme de $\mathbb{R}[X]$. Calculer $\Delta(X^k)$ pour $k\in\mathbb{N}$.
 - Δ est bien à valeurs dans $\mathbb{R}[X]$.
 - \bullet Soit $(P,Q) \in \mathbb{R}[X]^2$, $(\lambda,\mu) \in \mathbb{R}^2$,

$$\begin{split} \Delta(\lambda P + \mu Q) &= (\lambda P + \mu Q)(X+1) - (\lambda P + \mu Q)(X) \\ &= \lambda P(X+1) + \mu Q(X+1) - \lambda P(X) - \mu Q(X) \\ &= \lambda (P(X+1) - P(X)) + \mu (Q(X+1) - Q(X)) \\ &= \lambda \Delta(P) + \mu \Delta(Q) \end{split}$$

Donc, par les deux premiers points, Δ est un endomorphisme de $\mathbb{R}[X]$

 \bullet Soit $k \in \mathbb{N}$.

$$\Delta(X^k) = \begin{cases} 0 & \text{si } k = 0\\ (X+1)^k - X^k = \sum_{i=0}^{k-1} \binom{k}{i} X^i & \text{si } k \geqslant 1 \end{cases}$$

2°) **a)** Montrer que si $P \in \text{Ker } \Delta$ alors, pour tout entier $n \in \mathbb{N}$, P(n) = P(0).

Soit $P \in \text{Ker}(\Delta)$.

On pose, pour $n \in \mathbb{N}, H_n : \langle P(n) = P(0) \rangle$

- $ightharpoonup H_0$ est vraie.
- On suppose, pour un rang n fixé dans \mathbb{N} que H_n est vraie ie P(n) = P(0). Or P(X+1) = P(X) donc en évaluant en n : P(n+1) = P(n). D'où P(n+1) = P(0). Ainsi, H_{n+1} est vraie.
- On a montré par récurrence que : $\forall n \in \mathbb{N}, P(n) = P(0)$.

En considérant le polynôme Q = P - P(0), montrez que P est un polynôme constant.

Ainsi, le polynôme Q = P - P(0) admet une infinité de racines. C'est donc le polynôme nul. Ainsi, R = 0 ie P = P(0). Donc $P \in \mathbb{R}_0[X]$.

- **b)** Montrer alors que $\operatorname{Ker}\Delta = \mathbb{R}_0[X]$.
 - On vient de montrer $\operatorname{Ker} \Delta \subset \mathbb{R}_0[X]$
 - Réciproquement, si $P \in \mathbb{R}_0[X]$ alors $P = \lambda$ où $\lambda \in \mathbb{R}$. $\Delta(P) = \lambda \lambda = 0$. Donc $P \in \text{Ker}(\Delta)$.

$$\operatorname{Ker}(\Delta) = \mathbb{R}_0[X]$$

BCPST2

1

1

1

1

2

Soit
$$P \in \mathbb{R}[X]$$
 tel que $p = \deg(P) \geqslant 1$. P s'écrit : $P(X) = \sum_{k=0}^{p} a_k X^k$ avec $a_p \neq 0$.

$$\begin{split} \Delta(P) &= \Delta(\sum_{k=0}^p a_k X^k) \\ &= \sum_{k=0}^p a_k \Delta(X^k) \qquad \qquad \text{par lin\'earit\'e de } \Delta \\ &= \sum_{k=1}^p a_k \Delta(X^k) \qquad \qquad \text{car } \Delta(1) = 0 \end{split}$$

Or, pour
$$1 \leqslant k \leqslant p, \Delta(X^k) = \sum_{i=0}^{k-1} \binom{k}{i} X^i$$
 donc $\deg(\Delta(X^k)) = k-1 \leqslant p-1$.

Ainsi, $deg(\Delta(P)) \leq p - 1$.

De plus, le coefficient de X^{p-1} dans $\Delta(P)$ est : $a_p\binom{p}{p-1} = pa_p \neq 0$.

Donc,
$$deg(\Delta(P)) = p - 1 = deg(P) - 1$$
 et le coefficient dominant de $\Delta(P)$ est pa_p

b) Soit $n \ge 1$, montrer que $\Delta(\mathbb{R}_n[X]) \subset \mathbb{R}_{n-1}[X]$

Soit $P \in \mathbb{R}_n[X]$.

Si P est constant alors $\Delta(P) = 0$. Sinon, $\deg(\Delta(P)) = \deg(P) - 1 \leq n - 1$.

Donc,
$$\Delta(\mathbb{R}_n[X]) \subset \mathbb{R}_{n-1}[X]$$
.

 $\mathbf{4}^{\circ}$) Soit n un entier supérieur ou égal à 1. On note Δ_n l'endomorphisme induit par Δ sur $\mathbb{R}_n[X]$.

C'est-à-dire $\Delta_n: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$. $P \mapsto \Delta(P)$ Déterminer $\mathrm{Ker}\Delta_n$ et montrer que $\mathrm{Im}\Delta_n = \mathbb{R}_{n-1}[X]$.

- $ightharpoonup \operatorname{Ker}(\Delta_n) = \operatorname{Ker}(\Delta) \cap \mathbb{R}_n[X] = |\mathbb{R}_0[X]|.$
- On a vu : $\Delta(\mathbb{R}_n[X]) \subset \mathbb{R}_{n-1}[X]$ d'où $\mathrm{Im}(\Delta_n) \subset \mathbb{R}_{n-1}[X]$. Or, d'après le théorème du rang,

$$\dim \operatorname{Im}(\Delta_n) = \dim(\mathbb{R}_n[X]) - \dim \operatorname{Ker}(\Delta_n)$$
$$= n + 1 - 1 = n$$
$$= \dim \mathbb{R}_{n-1}[X]$$

Récapitulons, on a :
$$\begin{cases} \operatorname{Im}(\Delta_n) \subset \mathbb{R}_{n-1}[X] \\ \dim \operatorname{Im}(\Delta_n) = \dim \mathbb{R}_{n-1}[X] \end{cases}$$
 On en déduit que :
$$[\operatorname{Im}(\Delta_n) = \mathbb{R}_{n-1}[X]].$$

 5°) Montrer que l'endomorphisme Δ est surjectif.

Soit $P \in \mathbb{R}[X]$. Si P est nul, $\Delta(1) = P$

Sinon, on note $p = \deg(P)$. Alors $P \in \mathbb{R}_p[X] = \operatorname{Im}(\Delta_{p+1})$.

Donc, $\exists Q \in \mathbb{R}_{p+1}[X], P = \Delta_{p+1}(Q) = \Delta(Q).$

Donc, Δ est surjective.

 6°) a) On considère $F = \{P \in \mathbb{R}[X]; P(0) = 0\}.$

Vérifier que F est un sous-espace vectoriel de $\mathbb{R}[X]$ et que $\mathbb{R}[X] = F \oplus \mathrm{Ker}\Delta$.

1

1

1

Montrons que F est un sev de $\mathbb{R}[X]$. $F \subset \mathbb{R}[X]$ par définition de F. $F \neq \emptyset$ car $0 \in F$. Soit $(P,Q) \in F^2$, $(\lambda, \mu) \in \mathbb{R}^2$.

$$(\lambda P + \mu Q)(0) = \lambda P(0) + \mu Q(0) = 0 \text{ car } (P, Q) \in F^2$$

Donc, $\lambda P + \mu Q \in F$.

Ainsi, F est un sous-espace vectoriel de $\mathbb{R}[X]$

- lacktriangle Montrons que : $\mathbb{R}[X] = F \oplus \mathrm{Ker}\Delta$.
 - ightharpoonup Soit $P \in \mathbb{R}[X]$.

$$\begin{split} P \in F \cap \mathrm{Ker}(\Delta) &\iff P \in F \cap \mathbb{R}_0[X] \\ &\iff \begin{cases} P = \lambda & \text{où } \lambda \in \mathbb{R} \\ P(0) = 0 \end{cases} \\ &\iff P = 0 \end{split}$$

Donc, $F \cap \operatorname{Ker}(\Delta) = \{0\}$

ightharpoonup Soit $P \in \mathbb{R}[X]$.

$$P = \underbrace{P - P(0)}_{Q} + P(0)$$

 $P(0) \in \mathbb{R}_0[X] = \operatorname{Ker}(\Delta)$ et Q(0) = P(0) - P(0) = 0 donc $Q \in F$. D'où, $\mathbb{R}[X] = F + \operatorname{Ker}\Delta$

On en déduit que : $\mathbb{R}[X] = F \oplus \text{Ker}\Delta$

- b) Conclure que, pour tout polynôme Q de $\mathbb{R}[X]$, il existe un unique polynôme P de $\mathbb{R}[X]$ tel que P(0) = 0 et que $\Delta(P) = Q$. Préciser le degré de P en fonction de celui de Q. Soit $Q \in \mathbb{R}[X]$.
 - lacktriangle Unicit'e : Soient deux polynômes P_1 et P_2 tels que :

$$\Delta(P_1) = Q$$

$$P_1(0) = 0$$

$$\Delta(P_2) = Q$$

$$P_2(0) = 0$$

On pose $R = P_1 - P_2$. Alors, $R(0) = P_1(0) - P_2(0) = 0$. De plus,

$$\Delta(R) = \Delta(P_1 - P_2)$$

$$= \Delta(P_1) - \Delta(P_2)$$
par linéarité de Δ

$$= 0$$

Donc $R \in \text{Ker}(\Delta)$ donc R est constant. Comme R(0)=0, R est le polynôme nul. D'où $P_1=P_2$. D'où l'unicité.

$$Q = \Delta(P_1)$$

 $= \Delta(P + \lambda)$
 $= \Delta(P) + \Delta(\lambda)$ par linéarité de Δ
 $= \Delta(P)$ car $\lambda \in \text{Ker}(\Delta)$

On a bien trouvé $P \in \mathbb{R}[X]$ tel que P(0) = 0 et $\Delta(P) = Q$.

On a prouvé que :

$$\forall Q \in \mathbb{R}[X], \exists ! P \in \mathbb{R}[X], \begin{cases} \Delta(P) = Q \\ P(0) = 0 \end{cases}$$

De plus, deg(P) = deg(Q) + 1 si $Q \neq 0$. Si Q = 0 alors P = 0.

\mathbf{B} Etude d'une suite de polynômes

- $\mathbf{1}^{\circ}$) Montrer qu'il existe une unique suite $(P_n)_{n\in\mathbb{N}}$ d'éléments de $\mathbb{R}[X]$ vérifiant $P_0=1$ et pour tout $n\in\mathbb{N}^*:P_n(0)=0$ et $P_{n-1}=\Delta(P_n)$. On pose, pour $n \in \mathbb{N}^*$, $H_n : \exists ! (P_1, ..., P_n) \in \mathbb{R}[X]^n$, $\forall i \in [1, n], P_i(0) = 0$ et $P_{i-1} = \Delta(P_i)$.
 - Pour n = 1. On cherche $P_1 \in \mathbb{R}[X]$ tel que : $\begin{cases} P_1(0) = 0 \\ 1 = \Delta(P_1) \end{cases}$. $P_1 = X$ convient. L'unicité est assurée par 6b.
 - $lue{}$ On suppose H_n vraie pour un rang n fixé dans \mathbb{N}^* .

On cherche un polynôme P_{n+1} tel que : $\begin{cases} P_{n+1}(0) = 0 \\ P_n = \Delta(P_{n+1}) \end{cases}$

D'après 6b, ce problème a une unique solution (le polynôme P_n joue le rôle du polynôme Q).

 2°) Expliciter P_1 et P_2 .

$$P_1 = X$$
.
 P_2 vérifie :
$$\begin{cases} P_2(0) = 0 \\ \Delta(P_2) = X \end{cases}$$

 $\deg(P_2)=2$ donc P_2 s'écrit $P_2=aX^2+bX+c$ où a,b,c sont des réels et $a\neq 0.$ $P_2(0) = 0 \text{ donc } c = 0.$

$$\Delta(P_2) = X \iff a((X+1)^2 - X^2) + b(X+1-X) = X$$

$$\iff a(2X+1) + b = X$$

$$\iff 2Xa + a + b = X$$

$$\iff 2a = 1, a + b = 0$$

$$\iff a = \frac{1}{2}, b = -\frac{1}{2}$$

Ainsi,
$$P_2 = \frac{1}{2}(X^2 - X) = \frac{X(X - 1)}{2}$$
.

3°) Montrer que, pour tout entier
$$n \ge 1$$
, $P_n = \frac{X(X-1)\cdots(X-n+1)}{n!}$
On pose : $R_n = \frac{X(X-1)\cdots(X-n+1)}{n!}$.

1

On a : $R_n(0) = 0$. De plus,

$$\Delta(R_n) = \frac{(X+1)X\cdots(X-n+2)}{n!} - \frac{X(X-1)\cdots(X-n+1)}{n!}$$

$$= \frac{X(X-1)\cdots(X-n+2)}{n!}(X+1-(X-n+1))$$

$$= \frac{X(X-1)\cdots(X-n+2)}{(n-1)!}$$

$$= R_{n-1}$$

Or, par unicité de la suite (P_n) , on en déduit que : $P_n = \frac{X(X-1)\cdots(X-n+1)}{n!}$

 $\mathbf{4}^{\circ}$) Montrer que, pour tout entier $n\geqslant 1$, la famille (P_0,P_1,\cdots,P_n) est une base de $\mathbb{R}_n[X]$.

On remarque que : $\forall i \in [0, n], \deg(P_i) = i$.

Ainsi, la famille (P_0, \ldots, P_n) est une famille de polynômes non nuls échelonnée en degré donc elle forme une famille libre de $\mathbb{R}_n[X]$. Or elle a n+1 éléments et dim $\mathbb{R}_n[X] = n+1$.

Donc, (P_0, \ldots, P_n) est une base de $\mathbb{R}_n[X]$.

 5°) Expliciter alors les monômes X^2 et X^3 comme combinaisons linéaires de P_0 , P_1 , P_2 et P_3 .

•
$$P_0 = 1$$
, $P_1 = X$, $P_2 = \frac{X^2 - X}{2}$.
On en déduit : $X^2 = 2P_2 + P_1$.

 $P_0 = 1, P_1 = X, P_2 = \frac{X^2 - X}{2}, P_3 = \frac{X(X - 1)(X - 2)}{6} = \frac{X^3 - 3X^2 + 2X}{6}.$ D'où.

$$X^{3} = 6P_{3} + 3X^{2} - 2X$$

$$= 6P_{3} + 3(2P_{2} + P_{1}) - 2P_{1}$$

$$= 6P_{3} + 6P_{2} + P_{1}$$

 6°) Application: Pour tout couple (n,p) d'entiers naturels non nuls, on pose

$$S_{n,p} = 1^n + 2^n + \dots + p^n$$

a) Montrer que, pour tout entier $n \ge 1$, il existe un unique polynôme $A_n \in \mathbb{R}_{n+1}[X]$ tel que $A_n(0) = 0$ et $\Delta(A_n) = X^n$. D'après la première partie 6b, en posant $Q = X^n$.

$$\exists ! A_n \in \mathbb{R}[X], \begin{cases} \Delta(A_n) = X^n \\ A_n(0) = 0 \end{cases}$$

De plus, $deg(A_n) = deg(X^n) + 1 = n + 1$.

b) En revenant à la définition de Δ , montrer que $S_{n,p} = A_n(p+1)$. On a : $A_n(X+1) - A_n(X) = X^n$. D'où, $\forall k \in [0,p], A_n(k+1) - A_n(k) = k^n$. On somme de k=0 à k=p.

$$\sum_{k=0}^{p} A_n(k+1) - A_n(k) = \sum_{k=0}^{p} k^n$$
$$A_n(p+1) - A_n(0) = \sum_{k=0}^{p} k^n$$
$$A_n(p+1) = \boxed{S_{n,p}}$$

c) Si
$$X^n = \sum_{k=0}^n \alpha_k P_k$$
, justifier que $A_n = \sum_{k=0}^n \alpha_k P_{k+1}$.

Supposons :
$$X^n = \sum_{k=0}^n \alpha_k P_k$$
. On pose : $B_n = \sum_{k=0}^n \alpha_k P_{k+1}$.

On a bien :
$$B_n(0) = \sum_{k=0}^n \alpha_k P_{k+1}(0) = 0$$
. De plus,

$$\Delta(B_n) = \sum_{k=0}^{n} \alpha_k \Delta(P_{k+1})$$
$$= \sum_{k=0}^{n} \alpha_k P_k$$
$$= X^n$$

Par unicité du polynôme A_n , on a : $A_n = \sum_{k=0}^n \alpha_k P_{k+1}$.

d) Déterminer les valeurs de
$$A_2$$
 et A_3 .

On a vu :
$$X^2 = 2P_2 + P_1$$
. Donc, $A_2 = 2P_3 + P_2$

On a vu :
$$X^3 = 6P_3 + 6P_2 + 6P_1$$
. Donc, $A_3 = 6P_4 + 6P_3 + P_2$

e) Donner alors, sous forme factorisée, les valeurs de
$$S_{2,p}$$
 et $S_{3,p}$. On a :

$$\begin{split} S_{2,p} &= A_2(p+1) \\ &= 2 \times \frac{(p+1)p(p-1)}{6} + \frac{p(p+1)}{2} \\ &= \frac{p(p+1)}{6} (2(p-1)+3) \\ &= \boxed{\frac{(p+1)p(2p+1)}{6}} \end{split}$$

De même :

$$S_{3,p} = A_3(p+1)$$

$$= \frac{6(p+1)p(p-1)(p-2)}{24} + \frac{6(p+1)p(p-1)}{6} + \frac{p(p+1)}{2}$$

$$= \frac{p(p+1)}{4}((p-1)(p-2) + 4(p-1) + 2)$$

$$= \frac{p(p+1)}{4}(p^2 - 3p + 2 + 4p - 4 + 2)$$

$$= \frac{p(p+1)p(p^2 + p)}{4}$$

$$= \frac{p^2(p+1)^2}{4}$$

1

1

1

/39

2 e problème :

 1°) **a)** Une matrice nilpotente peut-elle être inversible? Justifier.

Une matrice nilpotente n'est pas inversible.

En effet, soit M une matrice nilpotente, d'indice p. On a alors $M^p = 0$ et $M^{p-1} \neq 0$. Supposons M inversible alors $M^{p-1} = M^{-1}$. $M^p = 0$ c'est absurde.

Donc M n'est pas inversible.

b) Un exemple: Si $A = \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Vérifier que A et B sont nilpotentes. Prouver que A + B est inversible.

Pour $k \in \mathbb{N}$, calculer $(AB)^k$.

1

1

1

1

1

Les matrices A + B et AB sont-elles nilpotentes?

$$ightharpoonup$$
 Calculons $A^2 = \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}$. $\begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix} = 0$. Donc A est nilpotente.

$$ightharpoonup$$
 De même $B^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = 0$. Donc $\boxed{B \text{ est nilpotente.}}$

$$ightharpoonup$$
 On a $A+B=\begin{pmatrix} -1 & 2\\ -1 & 1 \end{pmatrix}$.

Il est clair que rg(A+B) = 2 puisque ses deux colonnes ne sont pas colinéaires. Donc A+B est inversible. On en déduit donc que A+B n'est pas nilpotente.

Ainsi (AB) n'est pas nilpotente.

c) Retour au cas général :

Soient A et B nilpotentes qui commutent (c'est-à-dire AB = BA). Montrer AB et A + B sont nilpotentes.

Notons p l'indice de nilpotence de A et q celui de B.

- ightharpoonup Pour $r = \min(p,q)$. On a $(AB)^r = A^rB^r = 0$ car A et B commutent et $A^r = 0$ ou $B^r = 0$. Donc AB est nilpotente d'indice inférieur ou égal à $r = \min(p,q)$.
- ightharpoonup Calculons maintenant $(A+B)^{p+q}$ par la formule du binôme puisque A et B commutent.

$$(A+B)^{p+q} = \sum_{k=0}^{p+q} {p+q \choose k} A^k B^{p+q-k}$$

$$= \sum_{k=0}^{p-1} {p+q \choose k} A^k \underbrace{B^{p+q-k}}_{=0 \text{ car } p+q-k \geqslant q} + \sum_{k=p}^{p+q} {p+q \choose k} \underbrace{A^k}_{=0 \text{ car } k \geqslant p} B^{p+q-k}$$

$$= 0$$

Ainsi A + B est nilpotente et son indice est inférieur à p + q.

 2°) Soit M une matrice nilpotente d'indice p de $M_n(\mathbb{R})$.

- a) Justifier qu'il existe un vecteur X de $M_{n,1}(\mathbb{R})$ tel que $M^{p-1}X \neq 0$. Comme $M^{p-1} \neq 0$, alors il existe $X \in M_{n,1}(\mathbb{R}), M^{p-1}X \neq 0$.
- \mathbf{b}) Montrer la famille $\mathcal{F} = (X, MX, M^2X, \dots, M^{p-1}X)$ est libre.

Soit
$$(\lambda_0, \lambda_1, \dots \lambda_{p-1}) \in \mathbb{R}^p$$
 telle que $\sum_{k=0}^{p-1} \lambda_k M^k X = 0$.

Multiplions par M^{p-1} : en tenant compte que $M^k = 0$ pour $k \ge p$, on obtient: $\lambda_0 M^{p-1} X = 0$ donc $\lambda_0 = 0$ puisque $M^{p-1} X \ne 0$.

On a donc maintenant : $\sum_{k=1}^{p-1} \lambda_k M^k X = 0$. On multiplie par M^{p-2} et on obtient $\lambda_1 = 0$.

Par récurrence, on obtient alors $\forall 0 \leq k \leq p-1, \lambda_k = 0$. La famille est donc libre.

- c) Que peut-on en déduire sur p et n?

 Comme la famille précédente est libre et de cardinal p, on a : $p \leq \dim M_{n,1}(\mathbb{R}) = n$.
- d) Montrer $M^n = 0$ Comme $n \ge p$ et $M^p = 0$, on a $M^n = 0$.
- Comme $n \geqslant p$ et $M^p = 0$, on a M^n 3°) Soit M une matrice nilpotente de $M_n(\mathbb{R})$

Développer $(I_n - M)(I_n + M + \cdots + M^{n-1})$.

En déduire que les matrices $(I_n - M)$ est inversible et calculer son inverse.

Qu'en est-il de $I_n + M$?

1

1

Il est clair : $(I_n - M)(I_n + M + \cdots + M^{n-1}) = I_n - M^n = I_n$ puisque M est nilpotente.

Donc $(I_n - M)$ est inversible et son inverse est $(I_n + M + \cdots + M^{n-1})$

Si M est nilpotente alors -M aussi donc en remplaçant M par -M dans le calcul précédent,

on obtient que $I_n + M$ est inversible et son inverse est $\sum_{k=0}^{n-1} (-1)^k M^k$.

 $\mathbf{4}^{\circ}$) Pour toute matrice nilpotente M de $M_n(\mathbb{R}).$ On définit la matrice :

$$e(M) = I_n + M + \frac{1}{2!}M^2 + \frac{1}{3!}M^3 + \dots + \frac{1}{(n-1)!}M^{n-1}$$

a) Soient A et B deux matrices nilpotentes qui commutent. Montrer $: e(A+B) = e(A) \times e(B)$

Tout d'abord, on a vu que A + B est nilpotente d'indice inférieur à la fois à p + q (d'après 1c) et à n (d'après 2c).

On en déduit $e(A+B) = \sum_{i=0}^{n-1} \frac{1}{i!} (A+B)^i = \sum_{i=0}^{p+q} \frac{1}{i!} (A+B)^i$.

Calculons:

$$\sum_{k=0}^{p+q} \frac{1}{k!} (A+B)^k = \sum_{k=0}^{p+q} \frac{1}{k!} (A+B)^k$$

$$= \sum_{k=0}^{p+q} \frac{1}{k!} \sum_{i=0}^k \binom{k}{i} A^i B^{k-i} \qquad \text{car } A \text{ et } B \text{ commutent}$$

$$= \sum_{k=0}^{p+q} \frac{1}{k!} \sum_{i=0}^k \frac{k!}{i!(k-i)!} A^i B^{k-i}$$

$$= \sum_{i=0}^{p+q} \frac{1}{i!} A^i \left(\sum_{k=i}^{p+q} \frac{1}{(k-i)!} B^{k-i} \right)$$

$$= \sum_{i=0}^{p-1} \frac{1}{i!} A^i \left(\sum_{j=0}^{p+q-i} \frac{1}{j!} B^j \right) \qquad \text{car } A^i = 0 \text{ pour } i \geqslant p$$

$$= \sum_{i=0}^{p-1} \frac{1}{i!} A^i \left(\sum_{j=0}^{q-1} \frac{1}{j!} B^j \right) \qquad \text{car } B^j = 0 \text{ pour } j \geqslant q$$

$$= \left(\sum_{i=0}^{n-1} \frac{1}{i!} A^i \right) \left(\sum_{j=0}^{n-1} \frac{1}{j!} B^j \right) \qquad \text{car } p \leqslant n, q \leqslant n$$

$$= e(A) \times e(B)$$

Donc:

$$e(A+B) = e(A) \times e(B)$$

b) Soit A une matrice nilpotente. Montrer que e(A) est inversible et calculer son inverse.

On remarque que si A est nilpotente, -A aussi.

La formule précédente donne : $e(A)e(-A) = e(0) = I_n$.

De même, $e(-A)e(A) = e(0) = I_n$.

Donc e(A) est inversible et $(e(A))^{-1} = e(-A)$.

- 5°) Exemples :
 - **a)** Soit $A = \begin{pmatrix} 6 & 9 \\ -4 & -6 \end{pmatrix}$. Montrer que A est nilpotente et calculer e(A).

Calculons:
$$A^2 = \begin{pmatrix} 6 & 9 \\ -4 & -6 \end{pmatrix} \begin{pmatrix} 6 & 9 \\ -4 & -6 \end{pmatrix} = 0$$
. Donc A est nilpotente d'indice 2. On a alors $e(A) = I_2 + A = \begin{pmatrix} 7 & 9 \\ -4 & -5 \end{pmatrix}$. On a $(e(A))^{-1} = e(-A) = I_2 - A = \begin{pmatrix} -5 & -9 \\ 4 & 7 \end{pmatrix}$.

b) Soit $A = \begin{pmatrix} 1 & 1 & \alpha \\ 0 & 1 & 1 \\ -1 & -1 & -2 \end{pmatrix}$.

Vérifier qu'il existe un unique α tel que A soit nilpotente. On prendra désormais cette valeur pour α .

Calculons:

$$A^{2} = \begin{pmatrix} 1 & 1 & \alpha \\ 0 & 1 & 1 \\ -1 & -1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 1 & \alpha \\ 0 & 1 & 1 \\ -1 & -1 & -2 \end{pmatrix}$$
$$= \begin{pmatrix} 1 - \alpha & 2 - \alpha & 1 - \alpha \\ -1 & 0 & -1 \\ 1 & 0 & 3 - \alpha \end{pmatrix}$$

Puis:

$$A^{3} = \begin{pmatrix} 1 & 1 & \alpha \\ 0 & 1 & 1 \\ -1 & -1 & -2 \end{pmatrix} \begin{pmatrix} 1 - \alpha & 2 - \alpha & 1 - \alpha \\ -1 & 0 & -1 \\ 1 & 0 & 3 - \alpha \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 2 - \alpha & 2\alpha - \alpha^{2} \\ 0 & 0 & 2 - \alpha \\ \alpha - 2 & \alpha - 2 & 3\alpha - 6 \end{pmatrix}$$

Il est clair que $A^2 \neq 0$ et $A^3 = 0 \iff \alpha = 2$.

Calculer e(A) et son inverse.

Pour
$$\alpha = 2$$
, on a : $A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ -1 & -1 & -2 \end{pmatrix}$ et $A^2 = \begin{pmatrix} -1 & 0 & -1 \\ -1 & 0 & -1 \\ 1 & 0 & 1 \end{pmatrix}$ et $A^3 = 0$.
On obtient $e(A) = I_3 + A + \frac{1}{2}A^2 = \begin{pmatrix} \frac{3}{2} & 1 & \frac{3}{2} \\ -\frac{1}{2} & 2 & \frac{1}{2} \\ -\frac{1}{2} & -1 & -\frac{1}{2} \end{pmatrix}$.

On a:
$$(e(A))^{-1} = e(-A) = I_3 - A + \frac{1}{2}A^2 = \begin{pmatrix} -\frac{1}{2} & -1 & -\frac{5}{2} \\ -\frac{1}{2} & 0 & -\frac{3}{2} \\ \frac{3}{2} & 1 & \frac{7}{2} \end{pmatrix}$$
.

- **C)** A tout polynôme de $\mathbb{R}_n[X]$, on associe D(P) = P'.
 - i. Justifier que D est un endomorphisme de $\mathbb{R}_n[X]$. Il est clair que D est linéaire. De plus si $\deg(P) \leq n$ alors $\deg(P') \leq n$. Donc | D est bien un endomorphisme de $\mathbb{R}_n[X]$.
 - ii. Montrer que D est un endomorphisme nilpotent de $\mathbb{R}_n[X]$ et déterminer son indice de nilpot Soit $P \in \mathbb{R}_n[X]$, comme $\deg(D(P)) = \begin{cases} \deg(P) - 1 & si & \deg(P) \geqslant 1 \\ -\infty & sinon \end{cases}$

On en déduit par récurrence immédiate

 $\deg(D^k)(P)) = \begin{cases} \deg(P) - k & si & \deg(P) \geqslant k \\ -\infty & sinon \end{cases}.$ Et en particulier, $D^{n+1}(P) = 0$ pour tout polynôme $P \in \mathbb{R}_n[X]$. Ainsi D est nilpotent. Enfin, on a $D^n(X^n) = n! \neq 0$ donc D est nilpotent d'indice n + 1.

iii. On notera $P_0=1$ et pour tout $i\in \llbracket 1,n
rbracket, P_i=rac{X^i}{i!}.$ Justifier que la famille $\mathcal{B} = (P_0, P_1, \dots, P_n)$ est une base de E.

La famille \mathcal{B} est une famille de degré échelonné de $\mathbb{R}_n[X]$: elle est donc libre.

En effet : Soit $(\lambda_0, \lambda_1, \dots, \lambda_n) \in \mathbb{R}^{n+1}$ telle que $\sum_{i=0}^{n} \lambda_i P_i = 0$.

On en déduit : $\lambda_n P_n = -\sum_{i=1}^{n-1} \lambda_i P_i$. On en déduit : $\deg(-\sum_{i=1}^{n-1} \lambda_i P_i) \leqslant n-1$.

Si $\lambda_n \neq 0$, c'est absurde car $\deg(P_n) = 0$. Donc $\lambda_n = 0$ et $\sum \lambda_i P_i = 0$.

Par récurrence, on obtient : $\forall i \in [0, n], \lambda_i = 0$. La famille est bien libre.

De plus, elle est de cardinal $n+1=\dim(\mathbb{R}_n[X])$. C'est donc une base de $\mathbb{R}_n[X]$. Soient i et k deux entiers de [1, n], préciser $D^k(P_i)$.

On a pour $i \in [1, n]$, $D(P_i) = P_{i-1}$ et $D(P_0) = 0$.

On en déduit par récurrence immédiate : $D^k(P_i) = \begin{cases} P_{i-k} & \text{si} & i \geq k \\ 0 & \text{si} & i < k \end{cases}$

iV. Soit l'endomorphisme $S=I_d+D+\frac{1}{2!}D^2+\frac{1}{3!}D^3+\cdots+\frac{1}{n!}D^n$ Montrer : $\forall P\in\mathbb{R}_n[X], S(P(X))=P(X+1)$

Soit $i \in [0, n]$. Calculons $S(P_i)$.

- ightharpoonup Pour i = 0. $S(P_0) = P_0 = P_0(X+1)$ car $\forall k \ge 1, D^k(P_0) = 0$.
- ightharpoonup Soit $i \geqslant 1$. On a :

$$S(P_i) = (I_d + D + \frac{1}{2!}D^2 + \frac{1}{3!}D^3 + \dots + \frac{1}{n!}D^n)(P_i)$$

$$= P_i + \sum_{k=1}^i \frac{1}{k!}D^k(P_i)$$

$$= \sum_{k=0}^i \frac{1}{k!}P_{i-k}$$

$$= \sum_{k=0}^i \frac{1}{k!} \frac{1}{(i-k)!}X^{i-k}$$

$$= \frac{1}{i!} \sum_{k=0}^i \binom{i}{k}X^{i-k}$$

$$= \frac{1}{i!}(X+1)^i$$

$$= P_i(X+1)$$

Comme les deux endomorphismes de $\mathbb{R}_n[X]$, S et $P \mapsto P(X+1)$ coïncident sur la base (P_0, P_1, \dots, P_n) , il sont égaux.

/79

